STATIONARY SOLUTIONS OF THE EQUATIONS OF
MOTION OF A LIQUID WITH GAS BUBBLES

8. I. Plaksin UDC 532.529,5

It is well known that a liquid with gas bubbles is an example of a nonlinear dispersive medium, and the
existence of stationary perturbations in it is due to the mutual compensation of nonlinear and dispersion ef-
fects, In this case the nonlinearity of the gas—Iliquid mixture is determined by the hydrodynamic nonlinearity,
the nonlinearity of bubble oscillations, and the equation of state of the liquid component of the mixture. The
compressibility of the mixture depends on the compressibilities of its liquid and gas components, Stationary
solutions of the system of equations were obtained in [1-3] for a two-phase medium, including a second-order
nonlinear equation of the Rayleigh type for an isolated cavity, It was assumed in these papers that there is no
bubble motion relative to the liquid, and that their number per unit volume of the mixture is constant. Besides,
the hydrodynamics equations were linearized in [2], and the liquid component of the mixture was assumed in-
compressible in [1]. Stationary solutions of the full system of nonlinear equations of motion of a liquid with
gas bubbles are obtained in the present paper with a single assumption: there is no bubble motion relative to
the liquid, They are analyzed qualitatively, and the effect of simultaneous account of the compressibility of the
liquid component of the medium and of hydrodynamic nonlinearities is explained.

t

Wave propation in a liquid with gas bubbles has been considered within the two-phase model suggested
in {4, 5]. According to this model, the motion of a two~phase medium is described by the conservation equa-
tions of mass, momentum, number of bubbles, and energy accurately up to first order in the bulk concentra-
tion of the gas k, In the one~dimensional case these equations can be represented in the form

dplat + d(pu)lox = 0, d(pu)lot + o(p + 542)/61 =0,
aN/at - a(Nuw)loz = 0, p = (1 — k)p, k = 4nNR%3, (1)
RA*R/dt? + (3I12)(dR/dt)* = [py(Ro/RY* — plp(p,)s

where p, U, p are the medium density, velocity, and pressure; p, density of the liquid component of the mix-
ture; p, and ¢y, equilibrium values of the pressure and speed of sound in the pure liquid; R, and k;, equili~

brium values of the bubble radius and bulk concentration of the gas; R, varying bubble radius; N, number of

bubbles per unit volume; vy, adiabatic index for the gas in the bubble; and d/dt = 8/8t + ud/dx,

We introduce the dimensionless variables t' = twgy, X' = xwo/co, u=1u'c, p=p' poczo, Py = papocg, V=
(R/Ry)% P = PPy wk = 3ypy/pRE py = 0 (py) (in what follows the prime is omitted). In this case the Teta
equation [6] acquires the form p — p, = (p® — 1)/n, where n is the adiabatic index for the liquid. This approach
makes it possible to obtain for n = 1 a linear equation of state, i.e., to consider the acoustic approximation,
Forn = 7.15 we have a nonlinear equation of state of the liquid. Due to the presence of nonlinear convective
terms in it, the system of equations (1) is conveniently considered in Lagrangian coordinates. After trans-
forming to the mass Lagrangian coordinate &, this system acquires the form

dpldt + p20uldg = 0, duldt + 9plot = 0; (2)
k|0t -+ kpoulot = (3k/R)aRIdt, p = (1 — k)p; (3)
BV/or — (V-Y8)(0V/at? = VU (V-7 — p/po)/y. (4)

We consider the stationary solutions of the system (2)-(4), i.e., solutions depending on 7 = £ — ct, where
¢ is a constant, equal to the velocity (in units of ¢;) of displacement of some perturbation in the medium,
Equations relating all unknown quantities with the bubble volume V follows from (2), (3) for the stationary
solutions:

e(u — u) = p — pe, k= mpVI(1 + mpV); (5)
pl + (1 + nlp — p))~t" = B —mV, (6)

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekbnicheskoi Fiziki, No, 1, pp. 75-82,
January-February, 1983. Original article submitted December 28, 1981.

66 0021-8944/83/2401- 0066$07.50 © 1983 Plenum Publishing Corporation



where ug, pes as well as ke, Ve is the given state of the medium for some fixed value n = 1. The values of
the quantities m and B, calculated from the given state of the medium, equal m = ke/((1—kg)VePe), B =
pe/ct + 1/pe + ke/((1 = ke) pe)s where pe = (1 + n(pe — pp)) Vn, we point out that for a fixed solution m and B
are constants, i.e., the values of these quantities, calculated from the state of the medium at arbitrary points
of the wave corresponding to this solution — coincide. For the stationary solutions relations (5), (6) determine
the set of possible states of the medium into which the given state can evolve.

The function V(p), defined by Eq. (6), has a maximum Vy, at p = pm, where py, =p, + (CZn/ (n+1) -
1)/n, while dv/dp < 0 for p> pm, and dV/dp > 0 for p < py. The inverse function p (V) is defined for 0 <
V= Vm, and has two branches: a right one and a left one, where, respectively, p = pm and p < py,. The quan-
tity pe determines the branch of the function p(V), on which the given state of the medium is found. For the
linear equation of state of the liquid (n = 1) this function has the explicit shape

PV) = po = (pe + e — om(V — Vo) £V pe + o, —@m(V — VoF — 4t — 212,

where the right branch corresponds to the plus sign, and the left one — to the minus sign. We compare the non-
linear dependence of V(p) (6), corresponding to the acoustic approximation for the liquid component of the
medium, with the similar dependences obtained in [1-3]. The hydrodynamic equations in [1] are nonlinear, and
the liquid component of the medium is incompresgible, In this case the relation between V and p is linear,
while for all ¢ values dV/dp < 0, If the hydrodynamic equations are linear, but the liquid component of the
medium is compressible, then, as shown in [2], the relation between V and p is linear too. The pressure de-
pendence of the bubble volume, similar to that obtained in [2], follows from the linear equation (2), and is

V— V.= (p — p)(ct — 1)/*m. (7)

In the p, V plane the straight line (7) is tangent to the curve (6) at the point (ps, V) only for pg = p;. For
other pe values they intersect at this point. Let ¢*> 1. Then for pe < pm (¢4 < ¢%, ¢ = (1 + n(pe ~ po)(nﬂ)/n)
the signs of the derivatives dV/dp of the dependences (6), (7) coincide for p = pe. If pe = pyy, (¢? = cb), the
signs of these derivatives are different, i.e., unlike (7), the bubble volume decreases with increasing pressure
in (6). A similar distinction in the behavior of the bubble with varying pressure also occurs for c?< 1 at

Pe < Pm. For c? = 1 there exists no pressure dependence of the bubble volume (7), as well as of stationary
solutions differing from the trivial one, for which V =dv/dn = 0. In the nonlinear case stationary solutions
can also exist for ¢? = 1, Unlike [1, 2], for a fixed velocity value ¢ the sign of the derivative dV/dp in (6) can
vary, i.e., if there exists a stationary solution in which p acquires values larger and smaller than py,, for
this solution the bubble volume can both increase and decrease with increasing pressure, depending on whether
p < Pm Or p > py,. Besides, unlike [2], the restriction on the magnitude of the bubble volume V = Vy, does not
follow from the smallness condition of the acoustic Mach number, but is a consequence of the nonlinearity of
the hydrodynamic equations and of the compressibility of the liquid component of the medium. Thus, compari~
son of (6) with the similar dependences V(p), obtained in [1, 2], shows that account of hydrodynamic nonlin-
earities and of the compressibility of the liquid can lead not only to quantitative, but also to qualitative changes
in the stationary solutions. We note that a relation between V and p was obtained in [3] for stationary solu-
tions with account of hydrodynamic nonlinearities and liquid compressibility, but, as in [2], it is linear and has
the form (7).

We introduce the quantities V' = V/ Vg, m' = mVg (the primes are omitted again), The first integral for
V(1) follows from Eq. (4)

V-isVE = BU(V) + H), (8)

where

U@ =—mpy (V¥ (V7" — 1)+ ¢ =) = 1))/ (v — D+ (o —pe) X
X (P + pe — 209)/2¢* — [(0 — Po + D (L + 1 (p — po) ™" — (Pe — Py + DL +n(pe— p) ™"/ (n — 1);
B2 == 2/ myp, V2% H =V3/p% Ve=dVidy for n=n.;
and p (V) is defined by relation (6) (for n = 1 the last term of U (V) acquires the form [In (1 +p—p) + 1/(1+
p—py) —In (1+ pg—p;) = 1/(1+ pg —py)l). Thus, the study of wave stabilization in a liquid with gas bubbles
reduces to a study of the solution of Eq. (8). We explain the existence of a bounded solution of this equation
for a fixed ¢ value and a given state of the medium pg, Ve, kg, Ve. The right-hand side of Eq. (8) describes a

family of curves depending on the parameters m, pg, Vg, C, H. A solution of (8) may exist for those portions
of the curves for which the quantity U(V) + H is nonnegative., This set of curves will be investigated by quali-
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tative methods. For this it is necessary to know the shape of the function U (V) on the interval (0, Vi,jasa
function of the parameters pg, Ve, m, ¢. This function, whose derivative is

U' (V) =m(p,V"V"" — p(V)), (9)

has the following properties on the interval under consideration: U(1) = 0, U'" (V) < 0 for the left branch of
p (V), while for the right branch U'' (V) increases monotonically from —< to +% with increasing V. We find
the conditions for which there is a transition from one branch of the function p(V) to the other at the point
(Pms Vm) of the p, V plane, Unlike the tendency to a simple root, the nonconstant solution of Eq. (8) tends to
a double root of the function U (V) + H only asymptotically for n —~= or for n + —<, For the maximum value
of the bubble radius Vm = V(7m) to be equal to the exact value of the nonconstant mtegral (8) it is necessary
that U(Vy,) + H = 0. Expanding the indeterminate form (U (Vm) + H)/ (dV (py)/ dp)?, we find that V™V3D? tends
to the quantity —p2mc2Cn+0/n+d) U'(V,,)/(2n4-2)vith 11— 1y (V = Vi, P — pm). Therefore, if Vi, is a simple
root (U'(Vm) < 0), at the moment of time 1 = 1y, there is a transition from one branch of the function p (V)
to the other at the point (p,,, Vy,) on the p, V variable plane. At the same time, 'V(n) is continuous at 1 =
Nm, Since the limits of U' (V) when V tends to Vy, from the left and right branches coincide. If Vyy is a
double root (U' (Vm) = 0), then V.~ Vi, P = Pm» p — 0 asymptotically for 7 = Ny, 1 = OF Ny = — =,

Obviously, U'(1) > 0 for pe = 0, 0 < Vg <=, Besides, for any fixed value of pg > 0 there exists a
unique Ve, such that U'(1) > 0 for Vg < Ve’ U'(1) =0 for Vg = Ve, and U' (1) < 0 for Ve > V To study the
function U(V) it is convenient to divide the whole set of parameters pe, Ve into subsets: pg = 0, 0< Vg <2y
pe> 0, Vg > Ve, pe > 0, Ve = Ve, pe > 0, Ve < Ve In this case the fixed ke value is arbitrary within the model
under consideration, The branch of the funtcion p (V) corresponding to a given state of the medium, is deter-
mined by the relation between the quantities ¢? and ce. Therefore, for given values of pg, Ve we study the
qualitative nature of the function U (V) in three cases, corresponding to the following variations: c®:c? < c,

et =ck, c?> cé. We turn now to consider the sets mentioned above of the parameters pe, V.

Let pg = 0, 0 < Vg <, i.e,, U'(1) > 0. Using the properties of U(V), we verify that for the set of pg,
Ve considered the quahtatxve nature of thls function is as represented on Fig. la. Curves 1, 2 correspond to
the left and right branches of p(V) for c?=ck for 0< V=< 1, Vi = 1, since for c? < ¢} for 1< V= vVmU(v) >
O,pm=p= pe we have the obvious inequality pOVeyV Y ~p > 0. The curve of U(V) for ¢t < Ce is shown on
F1g 3. For ¢?> ¢} the shape of U(V) as a function of the ¢ value is shown by curves 4', 4'", 4'"", For c?>
4 the relation between V and p is realized by the left branch ofp(V) for which U" (V) < 0. Therefore, for
the existence of a solution (8) it is sufficient that Uq(c®) =U(Vp (c?)) = 0. The shape of this function, whose
derivative is dU,/dc? = (200 — FV/ ) op (1—VIVVRY) 4 (204 2D 2y/n]/2nes , is 111ustrated sche-
matically on Fig, 2a, It can be shown that for a given state Pes Ves ke there exists a unique value ej> (1-
np, D/ such that for ¢&> ¢ the inequality (U (Vi (c?)) < 0. Thus, for ¢? < c} there exists no solutlon of Eq.
(8) for the guantities under consideration pg, Vg, ke and arbitrary Ve () values. For an arbitrary fixed value
c?= ¢} the range of admissible H values, for Whlch a solution of Eq. (8) exists for given pg, Ve, kg, is deter-
mined by the inequality 0 = H= —Uy(c %), For 0= H<—U,(c?) the solution of (8) is periodic, with the relation
between V and p realized by the left branch of p(V). The qualitative nature of this solution is shown on Fig.
2h, At H= —Ui(c ), due to the fact that U' (V) < 0 there is a transition from one branch of p (V) to the other
on the p, V variable plane, In this case there occurs a transition in the phase plane (see Fig, 1b) at the point
V = Vi, V = 0 from one phase trajectory, corresponding to one of the branches of p(V), to another phase tra-
jectory, corresponding to the other branch, A graph of U (V), for which the relation between V and p is realized
by the right branch of p(V), is shown on Fig. 1a, curve 5. For H = —U1(c ) the solution is also periodic. The
shape of this solution is shown on Fig. 2¢. Unlike the solution shown on Fig. 2b, it is characteristic of this
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solution that bubble collapse and expansion ocecur twice during a period. One of the collapses occurs at the mo-
ment of maximum pressure in the medium, and the other — during the dilatation phase due to the inertia proper-
ties of associated mass of the bubble, Thus, for pe = 0, 0< Vg < and arbitrary values of kg, Vo ho solution
of (8) exists for c?= (1— np,)@=+/n, It hence follows that for stationary solutions, whose velocities are c?=
(1—npy)=+ie | the pressure satisfies the inequality p —p; > =~ p;, the minimum sound pressure in the medium,
by which stationary perturbations propagate with velocities of the range mentioned, being p,.

Let pe > 0, Vo > Ve, i.e., U'(1) < 0. For the given set of parameters pe, Ve the shape of U (V) is shown
on Fig. 3. Curves 1, 2 correspond to the left and right branches of p(V) for ¢* = c¢}. The solution for this ve-
locity value exists for H = 0, where in this case Vyy = 1. Its shape agrees qualitatively with the solution illus-
trated on Fig, 2c. For c¢?< ¢k the shape of U (V) is shown as a function of the ¢ value by curves 3!, 3'1, 3!, It
is seen from the properties of the function U(V) that for all ¢ for which U? (Vm(cz)) = 0 (curves 3', 3'") there
exists a single value V; € (1, V], such that U'(Vy) = 0. For these c values with 0 = H<—U(V,) the solution
of (8) is periodic, qualitatively agreeing with that shown on Fig. 2b. For H = —U(V,) the solution has the form of
a soliton (Fig. 2d). For H > —U(V;) Eq. (8) has no solution for the ¢ values mentioned. For ¢ values for which
U'(Vm (c?)) < 0 (curve 3''"), for 0= H <—TU(Vy ) the solution is periodic, qualitatively in agreement with that
illustrated on Fig. 2b (Fig. 2c¢). For c¢?> c} the shape of U(V) is shown by curve 4. For these ¢ values at
0= H<~U(Vm) (H=—TU(Vy)) the solution is periodic, and its schematic shape is given on Fig. 2b (Fig. 2c).

Let peg> 0, Ve = Ve, i,e., U'(1) = 0, For this set of parameters pg, Ve the shape of U (V) is given on
Fig. 4. We note that for the pe, Ve values under consideration the right-hand side of Eq. (4) vanishes. Curves
1, 2 correspond to the left and right branches of p (V) for c? = cze. The solution corresponding to the right
branch is a soliton, qualitatively in agreement with that illustrated on Fig. 2d. In this case Ne = @ or Ng =—x=,
H = 0. There exists no solution corresponding to the left branch For c?< 02 the shape of U(V) as a function
of the ¢ value is shown by curves 3, 4, 5, 5", 5", For ¢} < c? < e}, ¢k =ypech/(ype + mek) (UM (1) >
curve 3) the solution is a soliton, with H =0, ng == or ng = =%, For c?=ci (U' (1) = 0, curve 4) there exists
no solution, For c? < ¢4 (U'(1) < 0, curves 5', 5", 5'"") a solution exists for H > 0, Further study for c?< c}
is performed similarly to the case pg > 0, Vg > Ve (curves 3', 3'", 3''! on Fig. 3). For c?> cé (curve 6) the
solution for 0 < H < =U (V) (H =~U(Vy,)) i8 periodic, in qualitative agreement with the one illustrated on Fig.

2b (Fig. 2c).

Let pe > 0, Vo < Ve, ., U'(1) > 0 (Vpe/py < 1). The study of existence of solutions for e? = ¢} is car-
ried out similarly to the case p, < 0 (curves 1, 2, 4', 4", 4" of Fig, 1a). For e’ < c the shape of U (V) is
shown on Fig. 5a, The inequality U' (V(p)) > 0 is equivalent to the inequality
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PV Py <% (p), (10)

where ¥ (p) = (1+ ((Pe = p)/ o+ (1+ n(pe —pp)) ™ /P = (1+ n(p~ py))~¥%)/m)~7, and the function § (p) in-
creases monotonically on the interval [py,, Pel. Besides, ¥ (pe) =1, ¥' (py) = 0, P'7(p) > 0, P (pg) = Ve/Pux
then inequality (10) is valid for all p € [pp,, pPel. The inequality ¥'(pe) = Vg/p, holds for c? = ¢}, ¢f = ci/
(1+ mcevg/’ypo For these velocity values the shape of U( ) is shown by curve 6 on Flg Ba. For the pg, Ve
values considered there exists no solution for e = c?< ci. Let c? < c}, i.e., ¥'(pg) > V. /po For a fixed ¢
value the derivative U' (Vm (c?) can be larger than, equal or smaller than zero. We conSLder each of these
cases, Let U’ (Vm(c N> 0¥ (pm) > pmvy/p0 In this case it follows from the properties of the function
¥ (p) that there exists a unique value p¢ € [pm, pel such that ¥ (pg) = Ve /Py The shape of ¥ (p) as a func-
tion of values of pe, Ve, ko is shown on Fig, 5b by curves 1-3, Which of these curves corresponds fo a given
state of the medium is determined by the relation between ¥ (pg) and Vepg/ py. If ¥(pg) = V'ypg/pg, curves 1,
2, which lie above the straight line of pVV/pO hold, In that case U'(V(p)) =0 on[1, Vyyl, and the shape of
U (V) corresponds to curves 1, 2 on Fig. 5a, There exists no solution in this case. If ¥ (pg) < Ve pgfog, curve 3
(Fig. 5b) holds, In this case, for the existence of a solution it is necessary to determine the sign of U(V (pz))
(Fig. 5b). If U(V(py)) =0, then for 0 = H< —U(V(pgy)) the solution is periodic (Fig. 2b), while for H =~
U(V(pz)) the solution has the shape of a soliton (Fig. 2d). In this case the shape of U (V) is shown on curve 3
of Fig, 5a, Let U(V(p,)) > 0. In this case the solution of Eq, (8) does not exist, Let U'(Vy,(c?) = 0, ((pyy) =
PmVE/py)e The shapes of U(V) and ¢(p) are shown for this value on Figs, 5a, b, respectively, by curves
4, For solutions to exist it is sufficient that U'(Vy(c?)) =0, For 0 = H < ~U{(Vy) the solution is
'~ periodic (Fig, 2b), while for H = —U(Vy) a soliton occurs (Fig, 2d), Let U'(V,(c?) < 0 (o) <
Pm e/po. For these c values the shapes of the functions U(V) and ¥(p) are shown by curves 5, respec-
tively, on Figs., 5a, b, For the existenceof solutions it is sufficient that U(Vy,(c?)) < 0, In that case,
for 0= H> —~U(Vy,) (H=—U(Vy)) the solution is in qualitative agreement with that illustrated on Fig. 2b, c.

Thus, one can determine the existence and qualitative behavior of a stationary perturbation with an arbi-
trary fixed velocity for a given state of the medium. In this case the solution of (8) for given pg, Ve, ke, Ve,
and ¢ for which it exists is written down implicitly:

v .
fy— P = = | vV (U () + H)ay.

[

In conclusion, it is necessary to point out the features of the solution, related to nonlinearity effects of
the equation of state of the liquid component of the medium. In the p, V variable plane the curves (6) corre-
sponding to the linear and nonlinear equation of state of the liquid do not coincide. In particular, the p,, values
are different for ¢? # 1. The tangents to these curves at the point (pg, Ve) are m(V — V) = ({1 + po — py)™* —
e — Py MV — V) = ((1 + nlpe — pp))~*Vin—c2)(p — p,). It is seen that for pe # p, the slopes of the tan-
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gents are different. This difference is most important for c¢? = 1, Therefore, the solutions obtained with and
without account of the nonlinearities of the equation of state of the liquid can differ from each other. Thus,
Fig. 6 shows the dependence of the soliton amplitude on the square of its velocity (Ci <el= cé). Curve 1
corresponds to a linear equation of state of the liquid, and curve 2 — to the nonlinear. The equilibrium state of
the medium at ne =# = is of the form pe = 2py, Vo ! = pe/Py= 2 ke = 1074, Ve = 0,y = 1, 4, p, = 10° Pa/p i,
It is seen that for solitons whose velocities squared are smaller than 0.9 the amplitude coincide for the linear
and nonlinear equations of state of the liquid, For c¢?> 0.9 the amplitudes differ substantially.

Thus, the exact solution of the nonlinear equations of motion of a liquid with gas bubbles has been ob~
tained for one-dimensional stationary perturbations. In this case account of the hydrodynamic nonlinearity and
of the compressibility of the liquid component of the medium leads to an extended class of stationary solutions.

The author is grateful to vV, K, Kedrinskii for his interest in this work and for useful discussions.
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PROBLEM OF NONSTATIONARY TRANSPORT
PHENOMENA IN MULTIPHASE MEDIA

Yu. V. Pervushin UDC 541.182:532.7:539.219.3

Nonstationary transport phenomena in multiphase medium in many ways are determined by kinetic pro-
cesses at the interfaces, The simplest idealizations, introduced during Fourier's and Fick's times, when in-
terphase kinetics were given by the boundary conditions of the type

0n,/0R = aij(ni —_ nj),,

cannot reflect the basic features of transport processes when the physical conditions at the interfaces change
considerably and rapidly. This especially concerns problems with mobile boundaries, arising, for example, in
analyzing the kinetics of phase transformation [1-5]. In the spherical variant, nonstationary effects arise, in
particular, due to Laplacian pressure, which is clearly related to the motion of the boundary (~1/R(t)).

We shall give a derivation of the general type of boundary kinetics, based on the process of one~dimen-
sional transport of a fixed component of matter through the interface R of two media (phases), which is the
surface of discontinuity for the concentration field of the given component, We shall examine the model indi-
cated schematically in Fig, 1. It assumes that the volume of the media can be separated into some elementary
regions of molecular size ¢j and, in addition, they can vary in time kinetically and deformationally, i.e., a; =
a;{t).. For solid media, the parameter aj corresponds to a constant lattice, while for gas media it corresponds
to the free path of particles, We assume that the motion of particles occurs in some potential field, whose av-
erage relief is shown schematically in Fig. 1. The presence of external and internal fields introduces an
asymmetry into the potential relief of the particles, changing the kinetics of their transfer in the forward and
backward directions. In what follows, the average velocities of such random wandering W; will be distinguished
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